
www.manaraa.com

Circuits and programmable self-assembling
DNA structures
Alessandra Carbone†‡ and Nadrian C. Seeman§

†Institut des Hautes Études Scientifiques, 35, Route de Chartres, F-91440 Bures-sur-Yvette, France; and §Department of Chemistry, New York University,
New York, NY 10003

Communicated by M. Gromov, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France, July 11, 2002 (received for review January 30, 2002)

Self-assembly is beginning to be seen as a practical vehicle for
computation. We investigate how basic ideas on tiling can be
applied to the assembly and evaluation of circuits. We suggest that
these procedures can be realized on the molecular scale through
the medium of self-assembled DNA tiles. One layer of self-assem-
bled DNA tiles will be used as the program or circuit that leads to
the computation of a particular Boolean expression. This layer
templates the assembly of tiles, and their associations then lead to
the actual evaluation involving the input data. We describe DNA
motifs that can be used for this purpose; we show how the
template layer can be programmed, in much the way that a
general-purpose computer can run programs for a variety of
applications. The molecular system that we describe is fundamen-
tally a pair of two-dimensional layers, but it seems possible to
extend this system to multiple layers.

The notion of computation by interacting tiles dates from
Wang (1) in the 1960s. The use of stable branched DNA

molecules containing sticky ends to produce multidimensional
constructs was proposed in the early 1980s (2). Winfree (3)
suggested using Wang tiles based on branched DNA; Reif (4)
and Lagoudakis and LaBean (5) have made suggestions on this
approach. The assembly of DNA-based tiles into 2D periodic
arrays has been reported several times with a variety of motifs
(6–10). In addition, Rothemund has performed macroscopic-
scale aperiodic self-assembly (11). Recently, a one-dimensional
example of logical computation using DNA tiles has been
realized (12, 19). Here, we point out that this cumulative XOR
computation can also be viewed as a circuit that computes the
parity of the input elements. We extend this concept to 2D and
3D circuit systems based on unusual DNA motifs. The unique
approach we take to molecular computation is that we propose
a self-assembled programmable molecular plane that can process
a variety of different inputs in a second layer. We also note that
3D multilayered systems can be programmed similarly.

1. A Self-Assembling Template
A molecular circuit has been realized (12, 19) that, given an
entry of n bits, outputs 1 if the number of 1s in the entry is odd
and 0 otherwise; it computes the so-called parity function. The
idea is simple: One produces a one-dimensional template (Fig.
1a) that represents the input sequence of values 0 and 1 for the
circuit, together with an appropriate set of tiles (Fig. 1b). The
tiles code the truth table of the XOR operation (Fig. 1c)
denoted by the symbol �. When the tiles are added to a
solution containing the template, they self-assemble on it. One
after the other, the tiles ‘‘glue’’ to the template as soon as a
double site emerges. The assumption here is that a tile can
attach to the template only if there is a double site to bind it.
The first arrow in Fig. 1d illustrates the transition from the
second to the third step of self-assembly. After five transition
steps the complete structure is formed (Right); the value of the
last added tile is the value of the parity function on the
sequence 001101. The labeled corners used here are logically
equivalent to the labeled edges of Wang tiles. The set of tiles
is complete, i.e., for any possible output there is a tile with

the same input. In Sections 3 and 4 we extend the idea of
assembling tiles to a template, and we illustrate a way to
compute Boolean expressions; in Section 5 we suggest how to
construct more general programmable 3D devices. For the
first application, we need to introduce some classical defini-
tions and remarks on the theory of computation (see also refs.
13 and 14).

2. Boolean Functions and Boolean Expressions
A Boolean function f(x1, . . . , xn) is a mapping from {0, 1}n to
{0, 1}m, where n is the number of distinct Boolean variables, and
we assume, for simplicity, m � 1. The behavior of f is described
through a truth table that associates a value 0 or 1 with each
combination of values 0,1 of x1, . . . , xn. For instance, the truth
table in Fig. 2 Upper Left represents a function that answers 1
when exactly two of the three input variables take the value 1.

A Boolean expression is either a Boolean variable or an
expression of the form b(�1, . . . , �n) where b is an elementary
Boolean function and �1, . . . , �n are Boolean expressions.
Elementary Boolean functions, also called logical connectives,
are, for example, � (XOR) mentioned above, ∧ (AND), ∨ (OR),
¬ (NOT), NAND, and NOR. The expressions �1∧ �2 (conjunction
of �1 and �2), �1∨ �2 (disjunction), ¬ �1 (negation), �1 NAND �2,
and �1 NOR �2 are Boolean expressions. The � connective can
be defined out of ∧ , ∨ , ¬ as x � y � (¬ x ∧ y) ∨ (x ∧ ¬ y ); likewise,
the NAND and NOR connectives are defined as x NAND y �
¬ (x ∧ y) and x NOR y � ¬ (x ∨ y), respectively. A logical
connective has a fixed number of entries and a fixed number of
exits. All the Boolean connectives above have two entries (x, y)
and one exit, except for negation ¬ , which has only one entry.
The truth tables of ∧ , ∨ , ¬ , NAND, and NOR are given in
Fig. 2.

Any Boolean function can be defined as a Boolean expression
by using the connectives ∧ , ∨ , ¬ . For instance the Boolean
expression representing f(x1, x2, x3) in Fig. 2 is (¬ x1 ∧ x2 ∧ x3) ∨
(x1 ∧ ¬ x 2 ∧ x3) ∨ (x1 ∧ x2 ∧ ¬ x3). Given a truth table one can
always write down the associated Boolean expression: One reads
the rows of the truth table where the value of the function equals
1 and writes down a conjunction for each one of such rows. The
conjunction describes whether the input variables are negated or
not. For instance, in the first row of the truth table of f(x1, x2, x3)
with value 1, we see that x1 takes value 0 and x2, x3 take value 1.
The conjunction ¬ x1 ∧ x2 ∧ x3 describes this fact. The Boolean
expression is then defined as the disjunction of all conjunctions
representing values 1 in the truth table of the function.

For practical purposes, it can be useful to reduce the number
of connectives used to define the set of Boolean functions. The
pair of connectives ∧ , ¬ is sufficient for this purpose since ∨ is
definable from ∧ , ¬ as follows x ∨ y � ¬ (¬ x ∧ ¬ y ). Similarly,
the pair of connectives ∨ , ¬ can do it. One single connective is
also sufficient: By definition, the NAND operator is essentially
a ∨ , i.e., x NAND y � ¬ x ∨ ¬ y , and in particular it allows one
to define a negation as x NAND 1 � ¬ (x ∧ 1) � ¬ x. A similar

Abbreviations: BTLC, Boolean tree-like circuit; TX, triple crossover; 6HB, six-helix bundle.

‡To whom reprint requests should be addressed. E-mail: carbone@ihes.fr.

www.pnas.org�cgi�doi�10.1073�pnas.202418299 PNAS � October 1, 2002 � vol. 99 � no. 20 � 12577–12582

CH
EM

IS
TR

Y
M

A
TH

EM
A

TI
CS

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
18

, 2
02

1 



www.manaraa.com

argument shows that the connective NOR can be used to
represent all Boolean functions.

2.1. Boolean Tree-Like Circuits (BTLCs). Another way to represent
Boolean functions is through BTLCs. One starts with a tree-
like-oriented graph. Each node in the graph is marked with a
label that is either a Boolean variable xi, a designation of 1
(‘‘true’’) or 0 (‘‘false’’), or an elementary connective. Examples
of a BTLC are illustrated in Fig. 3. If a node is marked with a
Boolean variable or with true or false, then there are no
incoming edges at that node. We call these nodes input nodes. If
a node is labeled with a Boolean connective that has k inputs and
1 output, then the node should have exactly k edges going into
it and n edges going out from it, where n � 0 (to allow multiple
uses of the output value). We call a node with no outgoing edges
an output node.

A BTLC represents a Boolean function from {0, 1}n to
{0, 1}m, where n is the number of Boolean variables labeling the
input nodes, and m � 1 for simplicity. Assigning values to the

input nodes leads to an assignment to all other nodes of the
circuit, which is done by steps. Whenever all input nodes z1,
z2, . . . , zk of a given gate are evaluated, then the gate itself is
evaluated, and its output y is associated with the gate. This
procedure is realized recursively on all gates from the inputs to
the output of the circuit, and it is well founded because of the
absence of oriented cycles in the underlying graph. Let’s assign
the values 0,1,1 to x1, x2, x3, in the circuit of Fig. 3a. The first step
of the evaluation computes x1 ∧ x2 and x2 ∧ x3, and it associates
values 0 and 1 with the outputs of the respective gates. The
second step evaluates 0 ∨ 1 and fixes at 1 the gate in the third row.
After the evaluation of the last conjunction (i.e., 1 ∧ 1, in the
fourth row, where the gate true takes value 1), the circuit outputs
1 (Fig. 3b). For each Boolean expression there is an equivalent
BTLC. The reader can easily verify that [(x∧ x2) ∨ (x2 ∧ x3)] ∧ true
is the Boolean expression associated with the BTLC in Fig. 3a.

3. Self-Assembling Boolean Expressions: The Parts and
the Whole
Based on the principle of self-assembly of tiles introduced in
Section 1, we propose a general schema for the computation of
Boolean expressions. The interest is twofold. We investigate on

Fig. 1. Template (a) and set of tiles (b) that realize the truth table of the � operation (c). The pairs of values (x1,x2) on each row of the table correspond to
the pair of values on the left-hand side of the tiles in b, and the value x1 � x2, associated with x1,x2 in the table, is recorded on the right-hand side of the
corresponding tile. (d) Process of self-assembly of tiles on the template (a). The value 1 (circled) obtained at the end of the assembly, corresponds to the odd
number of 1s in the input sequence 001101.

Fig. 2. Truth tables for some Boolean functions on the variables x1, x2,
and x3.

Fig. 3. (a) A BTLC. (b) Evaluation of the circuit (a) on the entries 0,1,1; the
input gate labeled ‘‘true’’ takes value 1. (c) The input x5 of the circuit is
combined with an intermediate result, generated in the second row of the
tree, through a NAND gate that lies in the third row. (d) Silent nodes are added
to the circuit (c) to make it a BTLC with branches that pass through all rows.

12578 � www.pnas.org�cgi�doi�10.1073�pnas.202418299 Carbone and Seeman

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
18

, 2
02

1 



www.manaraa.com

the one hand new self-assembling structures and on the other
hand the possibility to compute arbitrary Boolean functions. We
construct a structure that corresponds to a computation on a
circuit by assembling two structures, one lying over the other:
The lower layer is a template, and the upper one is formed by
assembling a set of tiles on the template compatible with an array
of ‘‘input’’ tiles. The template is a fixed support that codes a
tree-like circuit. The array of input tiles provides the entries to
the circuit. The assembly of the tiles depends on the information
coded on both the tiles and the template. We first define the
different parts playing a role in the construction (i.e., template,
tiles, array) and then explain how they assemble (Section 3.3).

We need to impose a structural assumption on the represen-
tation of BTLC in the plane, owing to a technical point. We
require that edges in the tree do not cross, and for the nodes, we
ask that the top row of the tree contain input nodes only, that all
input nodes lie in this row, and that a node x lying at row h is
connected by edges to nodes occurring in row h � 1. The nodes
of the circuit in Fig. 3c are not connected to nodes lying in
adjacent rows. To overcome this problem, we allow an extra type
of gate that simply passes on information (silently) without
computing it (see Fig. 3d).

3.1. The Template. A template is a discrete triangle on a regular
lattice. Fig. 4 (Upper) shows, the nodes of the triangle (black
dots), called pawns, labeled in five different ways: I, N, TR, TL,
and �. The labeled nodes correspond to gates in a tree-like
circuit. Input gates are labeled I, and they lie on the first (Upper)
row of the triangle. Computational gates are labeled N. They can
be NAND gates, for instance. Any node in the discrete triangle,
except those on the first row, can be labeled this way. The labels
TR�TL refer to transmitter gates. They are silent gates that pass
on information without altering the value. The information may
be passed on from left to right (TL) or right to left (TR). The label
� corresponds to nodes that are not linked by edges in the
tree-like circuit. A Boolean expression (or tree-like circuit) �
with n variable occurrences, can be represented by a template of
n inputs and n rows of pawns. Each variable occurrence in �
corresponds to an input of the template. If the ith pawn
(counting from the left) on the rth row of the template is
identified by the pair (r, i), then the input pawns are called (0, i),
with i � 1…n, and the pawn at the bottom of the template is
(n, 1). The N gates in the template are located as follows: for each
subexpression x1 NAND x2 in �, we consider the pair of input
pawns (0, i), (0, i � 1) associated to x1, x2 and label N the pawn

(1, i); for each subexpression �L NAND �R of �, there are two
pawns (r, p), (s, q) corresponding to �L, �R (if �L, or �R, is a
variable, we consider the input pawn associated to it); we label
TR all the pawns along the diagonal of the template that begins
at (s, q) and goes down from right to left, and we label TL all the
pawns along the diagonal that begins at (r, p) and goes down
from left to right, until the intersection node between the two
diagonals is reached and we label it N. We repeat this process
until the pawn (n, 1) of the template is labeled N. All pawns that
have not been named will take the label �. Compare the circuit
illustrated in Fig. 3d with the template of Fig. 4 (Upper).
Physically, a template is realized as a 3D structure built on a
surface with a triangle of pawns sticking out of it (see Fig. 4 and
Section 3.4). Templates need not be triangular (see Sections 4
and 5).

3.2. The Tiles and the Array of Entries. As in refs. 12 and 19, a tile
is constructed in three parts where information is suitably coded
(Fig. 5c). The labels i, j, k, l are values 0,1, and A codifies extra
information that we call middle label. The pair of values i, j are
called input values of the tile, and k, l are called output values of
the tile. A molecular representation of the tile as a DNA triple
crossover (TX) molecule (9) is shown in Fig. 5d. The values of
i, j, k, and l are encrypted in the overhanging sticky ends shown
at each of the corners of the tile. The coding of A is explained
in Section 3.4; no coding is indicated in the molecular structure
shown in Fig. 5d, where the middle helical domain terminates in
hairpin loops.

We define four types of tiles, each of them corresponding to
a different labeling of the pawns of the template (see Fig. 5a).
Input tiles, labeled I, represent the 0�1 values given as inputs to
the circuit. (We could consider only the first and the fourth tile
in the figure, but in principle, there is no reason for imposing this
restriction.) Computational tiles, labeled N, represent the truth

Fig. 4. (Upper) A template of labeled pawns. (Lower) A vertical section of the
template. The pawns are glued to a surface.

Fig. 5. (a) Four types of basic tiles: input, I; computational, N; transmitter,
TL�TR; and void, *. (b) An array of entries constituted by a bar to which a
sequence of input tiles is attached. A tile (c) and its molecular representation
as a TX molecule (d) are shown.

Carbone and Seeman PNAS � October 1, 2002 � vol. 99 � no. 20 � 12579

CH
EM

IS
TR

Y
M

A
TH

EM
A

TI
CS

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
18

, 2
02

1 



www.manaraa.com

table for the NAND operator. The entries of the truth table are
read on the upper side of the tile, and the output value is read
on the bottom side. The output value appears both on the left
and right of the tile, because it might be combined with some
value arriving either from the left or the right of the circuit.
Transmitter tiles, labeled TL�TR, pass the value 0 or 1 on the right
(TR) or the left (TL). The letters x, y can take values in 0 or 1;
therefore, there are 16 transmitter tiles. Void tiles, labeled �, do
not pass on any information. The letters x, y, z, w take the values
0 or 1. There are 16 different types of void tiles. A template
defines a Boolean expression that accepts n input values. In
physical terms, to pass on the n values to the template, we need
to create an array of entries made out of input tiles (Fig. 5b).

3.3. How the Construction Works. Given a fixed template we
superimpose on its first row of pawns an array of entries with the
same length. Fig. 6 Upper shows a view from the side: The pawns
of the first row of the template match the tiles of the array of
entries. The template, array of entries, and computational,
transmitter, and void tiles are added to the solution. The array
of entries is considered to be preassembled on the template. The
tiles glue to the template by self-assembly; they attach to adjacent
tiles by matching both the input values (as described in Section
1) and the middle label of the adjacent pawns. This process
repeats until the assembly is complete. An assembly process is
illustrated in Fig. 6 Bottom.

The output values of void tiles are not determined a priori by
the structure. In fact, given two input values and a middle label
�, we have tiles in solution with any pair of output values k, l. This
freedom involves no complication because of the way that void
tiles are combined with the rest of the tiles in the structure; void
tiles never contribute input values to a computation. A similar
consideration holds for transmitter tiles, where the values of an
opposite pair of corners in the tile are free. Thus, if the void tile
in the third row of Fig. 6 Lower had wound up in the position of
the void tile in the second row, a TL tile with zeros on both its
nontransmissive corners would have been available to fit on the
left of the third row.

3.4. The Chemical Nature of Template and Pawns. The system
described in ref. 9 appears suitable for use as the pawn layer. This

system consists of a 2D array containing helices that protrude
from it. The AB array (Fig. 7) consists of TX tiles where the first
domain of one tile connects to the third domain of the adjacent
tile, leaving gaps large enough to insert a single DNA helix such
as D. The C component is another TX tile, rotated (and renamed
C�) by three nucleotide pairs �102°, to be nearly perpendicular
to the array. Its central domain contains sticky ends to bind it to
gaps in the array. Attachment of C� leads to a helix protruding
from the AB array in each direction. A specific set of helices that
are the out-of-plane domains of C�-like tiles could function as a
hard-wired bottom layer of pawns. The sticky ends on the
protruding helices could be tuned to select for the proper types
of TX tiles (N, TL, TR, �), which would be associated with the
central helical domain of a TX tile that lies parallel to the AB
array. The additional pawn sticky ends may entail an increase in
stringency, which could be provided by having those sticky ends
protected by imperfectly paired hairpin loops, only displaceable
by the correct pairing partner. The outer domains would corre-
spond to the Boolean input and output values of those tiles.

3.5. Error Detection. A TX tile may fail to bind to a site in the array,
leading to an error in the circuit. We envision the circuit to be
evaluated many times by a large number of molecular arrays in
solution. Those arrays containing gaps can be detected by adding
a TX tile containing universal bases (e.g., 5-nitroindole) on their
sticky ends. Such a tile could fill gaps but would not displace tiles
already present. This TX would contain biotin groups, so that if
it bound, the array could be removed by magnetic streptavidin
bead treatment (e.g., ref. 15).

4. Programmable 2D DNA Devices
Consider a template of k pawns, and imagine each pawn to be
equipped with a specific coding sequence Ai, for i � 1, . . . , k. A
controlled assembly of the array allows knowing the position of
each coding Ai in the template and opens the possibility to
address the pawn i by means of its coding address Ai. Imagine
also that each pawn can enter into a bi-stable state, and that this
state could be controlled as well. Then, the template could be
programmed and reused. It could be used to induce a controlled
assembly of tiles, which can lead to the computation of an
arbitrary Boolean function or the creation of 2D DNA layers
satisfying specific properties. For instance, one can imagine large
layers made of alternating strips of tiles of width k; fancier
designs of 2D DNA layers and 3D arrays will be addressed in
Section 5. In this section we analyze how to construct the units
of a programmable 2D DNA device.

Fig. 6. (Upper) A template and an array of entries viewed from the side.
(Lower) The template of Fig. 4 is covered partly by a layer of tiles.

Fig. 7. A 2D array composed of two TX molecules, a rotated TX molecule, and
a double-helical molecule. A schematic drawing shows the array components:
A and B are TX molecules with geometrically represented sticky ends on all
three domains. These tiles assemble to produce the AB array. C is a TX molecule
with a single pair of sticky ends in its central domain; when they pair with A
and B, C is rotated 102° relative to their plane (shown as C�). D is a double helix.
The ABC�D array is shown below the AB array. The presence of the C� units
results in raised stripes, visible in an atomic force microscopy image (Right).

12580 � www.pnas.org�cgi�doi�10.1073�pnas.202418299 Carbone and Seeman

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
18

, 2
02

1 



www.manaraa.com

4.1. Programmable Pawns. The pawns define the circuitry on which
the tiles do the computation. We have shown above that it is
possible to hard-wire a set of pawns by using TX molecules that
are rotated out of the plane. However, f lexibility would be
maximized if the pawns themselves were programmable such
that any circuit could be derived from a standard ‘‘pegboard’’
arrangement of pawns. The recent development of the PX-JX2
device (15) suggests a way to produce programmable pawns. The
PX-JX2 device is programmed by the addition of strands to
the solution. Fig. 8 shows the operation of the device: a illustrates
the two different motifs, PX and JX2. The PX motif contains four
strands, and it appears that two double helices are wrapped
around each other. This arrangement of DNA contains two
parallel double-helical domains where the strands cross-over
between domains at every position. The JX2 structure is just like
the PX structure except that two adjacent points of juxtaposition
between the helical domains lack crossovers, leading to a global
difference: JX2 is unwrapped by a half turn relative to PX. b
shows a modified version of these structures that enables their
interconversion. Two parallel strands near the middle of the PX
molecule, one red and one blue, have been interrupted, and the
missing DNA is replaced with two green ‘‘set’’ strands. The set
strands contain single-stranded extensions (16); binding with the
complete complements to the set strands leads to their removal
(process I). Adding purple set strands (process II) produces the
JX2 structure. Processes III and IV convert JX2 back to PX. It
appears possible to embed the PX-JX2 device in a larger cassette
(Fig. 9) that can be incorporated into a DNA lattice much like
the C� tiles above.

The cassette contains two parts, a motif on the left, and a
PX-JX2 device on the right (Fig. 9 a and b). The bottom helical
domain on the left is designed to insert into a 2D array
containing gaps such as the AB array (Fig. 7). The left motif
supports the PX-JX2 device on the right. The PX-JX2 device is
switched from the PX state to the JX2 state by replacing the
green strands with the purple strands. A DX protecting group is

provided by the lattice (Fig. 9c). Only the helix that extends
above it can interact with the tile-containing layer, and the other
one is buried. PX-JX2 interconversion reverses the accessibility
of the helices. A pair of devices could interact with the middle
domain of a TX tile (Fig. 9d) to select whether it should be a tile
associated with the N, TR, TL, or � functions (Fig. 9e). To select
for more than four functions, a tile more complex than TX would
be needed. Recently, a six-helix bundle (6HB) tile has been
devised (Fig. 10c) (F. Mathieu, C. Mao, and N.C.S., unpublished
data). For a single-layer application, there are no obvious
advantages to using such a tile over, say, a four-helix analog of

Fig. 8. Schematic drawings of the PX-JX2 device. (a) The PX and JX2 motifs.
The PX motif consists of two helical domains formed by four strands that flank
a central dyad axis. Two stands are drawn in red and two in blue. Watson–Crick
base pairing is shown by thin horizontal lines. The same conventions apply to
the JX2 motif. The letters A, B, C, and D and the color coding show that the
bottom of the JX2 motif (C and D) is rotated 180° relative to the PX motif.
(b) Principles of operation. On the left is a PX molecule. Its green set strands
are removed by the addition of biotinylated green fuel strands (biotin is
indicated by black circles) in process I. The intermediate is converted to the JX2

motif by the addition of purple set strands in process II. The JX2 molecule is
converted to the PX molecule by processes III and IV.

Fig. 9. The PX-JX2 device is embedded into a five-helix motif. a and b show
the two conformations. c schematizes the five helices as squares, including a
green sticky end for JX and a purple one for PX, and also shows the protecting
DX (yellow). d shows four possible TX middle domains, with sticky ends drawn
colored. e shows four different middle domains paired to programmable
pawns with the same coloration.

Fig. 10. (a) Multiple-layer 3D assembly of tiles and pawns. (b) View from the
top of a wall built out of tiles lying above ‘‘active’’ pawns. The white circles
represent inactive pawns. (c) The 6HB. A view down the helix axes (Upper) and
an oblique view (Lower) are shown. The helices are phased a half-turn apart
as indicated by the alternating filled and unfilled circles in the drawings.
(d) Three layers of 6HB tiles. The red circles are helices in 6HB tiles in a plane
closer to the reader than the green circles; the green circles are 6HB tiles
further from the reader. The features shown as three blue-filled circles in a row
or three purple-filled blue circles are programmable TPJD motifs that interact
with the red tiles and are closer yet to the reader. Two TPJD motifs abut each
other to give a selectivity of eight possible tile types in any given layer. No TPJD
motifs emanate up from the top layer or down from the bottom layer to give
a sense of the intralayer arrangement.

Carbone and Seeman PNAS � October 1, 2002 � vol. 99 � no. 20 � 12581

CH
EM

IS
TR

Y
M

A
TH

EM
A

TI
CS

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
18

, 2
02

1 



www.manaraa.com

the planar TX tile. However, 6HB may be more useful in 3D (see
below).

5. Programmable 3D Arrays
Templates can be used to construct 3D objects: Consider a
template with a shape that need not be a triangle, for instance
let it be a ‘‘square,’’ and consider tiles equipped with a pawn. The
first layer of assembled tiles (possibly guided by an array of
entries) forms a second ‘‘template’’ of pawns that can be used for
assembling a second layer of tiles, and so on (Fig. 10a). More
sophisticated construction schemes can be devised. For instance,
one might fill up the board only partially with tiles: By inserting
appropriate coding in the pawns, one would be able to build
‘‘walls’’ with specified ‘‘heights’’ (Fig. 10b).

Fig. 10d illustrates the way that TPJD and 6HB motifs could
be combined to produce a 3D arrangement. Illustrated are layers
of 6HB tiles connected by pairs of adjacent TPJD programmable
pawns. The bottom layer of 6HB motifs forms the basis for the
attachment of the TPJD programmable pawns, which in turn
template the assembly of the next layer. With this paired
arrangement of pawns, eight different types of 6HB tiles could
be used. Although there may ultimately be very difficult exper-
imental problems with this type of 3D assembly, the components
described above seem capable of serving to produce the 3D
system described above. If the 6HB is used for the computational
tiles and TPJD motifs are used for the pawns, one can build up
a 3D structure by using the scheme illustrated in Fig. 10d.

Discussion and Comparison
We have outlined a system for computation on the molecular
scale. We have described the arrangement of a programmable set
of pawns that can produce a series of different logical operations
in the level above them. Once assembled into a program, input
data containing any values at all can be processed by this
program. The pawns are based on sequence-dependent DNA

devices that can be programmed individually. Each device pair
can be responsible for generating four different specifications for
the type of tile that is inserted in the computational array. The
programs could be activated by the use of a device such as that
described in ref. 17 to add specific strands on an electronic signal,
thereby programming the pawns with a conventional computer.
The key cost to operating the system will be generating the
variety of strands necessary to label all the different pawns
needed for the system. This cost could be decreased significantly
by the use of mix-and-split syntheses (18) that encode sticky ends
on the pawns to specify their location in the array as well as the
sequence of the controlling strands. This approach will be
described elsewhere.

In ref. 3, Winfree proposes (one- and two-dimensional)
blocked cellular automata (BCA) as a Turing universal com-
puting schema for molecular computation. Our architecture is
also Turing-universal, since any circuit can be represented and
computed within it. The basic difference with BCA is that here
the program is ‘‘separated’’ from the data: The program is written
on the pawns of the template, and the data (both input data and
intermediate data obtained along the computation) are written
on the second layer of the assembly. As a consequence, the
template (already self-assembled) can be reprogrammed, while
for BCA, new tiles must be redesigned for different programs.
The simultaneous treatment of programs and data in BCA
demands, in general, a larger number of tiles compared with the
one required for our approach, although our motifs are more
complex.

This work has been supported by National Institute of General Medical
Sciences Grants GM-29554, Office of Naval Research Grant N00014-
98-1-0093, National Science Foundation Grants CTS-9986512, EIA-
0086015, DMR-01138790, and CTS-0103002, and Defense Advanced
Research Planning Agency�Air Force Office of Scientific Research
Grant F30602-01-2-0561.

1. Wang, H. (1963) Proceedings of the Symposium in the Mathematical Theory of
Automata (Polytechnic Press, Brooklyn, NY), pp. 23–55.

2. Seeman, N. C. (1982) J. Theor. Biol. 99, 237–247.
3. Winfree, E. (1996) in DNA Based Computing, eds. Lipton, E. J. & Baum, E. B.

(Am. Math. Soc., Providence, RI), pp. 199–219.
4. Reif, J. H. (1999) in DNA Based Computers III, eds. Rubin, H. & Wood, D. H.

(Am. Math. Soc., Providence, RI), pp. 217–254.
5. Lagoudakis, M. G. & LaBean, T. H. (2000) in DNA Computers V, eds. Winfree,

E. & Gifford, D. K. (Am. Math. Soc., Providence, RI), pp. 141–154.
6. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. (1998) Nature (London)

394, 539–544.
7. Liu, F., Sha, R. & Seeman, N. C. (1999) J. Am. Chem. Soc. 121, 917–922.
8. Mao, C., Sun, W. & Seeman, N. C. (1999) J. Am. Chem. Soc. 121, 5437–5443.
9. LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J. H. & Seeman,

N. C. (2000) J. Am. Chem. Soc. 122, 1848–1860.
10. Sha, R., Liu, F., Millar, D. P. & Seeman, N. C. (2000) Chem. Biol. 7, 743–751.

11. Rothemund, P. W. K. (2000) Proc. Natl. Acad. Sci. USA 97, 984–989.
12. Mao, C., LaBean, T., Reif, J. H. & Seeman, N. C. (2000) Nature (London) 407,

493–496, and erratum (2000) 408, 750.
13. Papadimitriou, C. (1994) Computational Complexity (Addison–Wesley, New

York).
14. Sipser, M. (1996) Introduction to the Theory of Computation (PWS, Boston).
15. Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. (2002) Nature (London) 415, 62–65.
16. Yurke, B., Turberfield, A. J., Mills, A. P., Jr., Simmel, F. C. & Neumann, J. L.

(2000) Nature (London) 406, 605–608.
17. Gurtner, C., Edman, C. F., Formosa, R. E. & Heller, M. J. (2000) J. Am. Chem.

Soc. 122, 8589–8594.
18. Ohmeyer, M. H. J., Swanson, R. N., Dillard, L. W., Reader, J. C., Asouline, G.,

Kobayashi, R., Wigler, M. & Still, W. C. (1993) Proc. Natl. Acad. Sci. USA 90,
10922–10926.

19. Mao, C., LaBean, T., Reif, J. H. & Seeman, N. C. (2000) Nature (London)
408, 750.

12582 � www.pnas.org�cgi�doi�10.1073�pnas.202418299 Carbone and Seeman

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
18

, 2
02

1 


